WIRELESS VERSATILITY

G4™ is the compact, tetherless tracker that allows for uninhibited movement. Harnessing the powerful performance of A/C electromagnetics, G4 delivers high-quality, real-time 6DOF data without the post analysis complications of hybrid technologies.

HOW IT WORKS
Sensor data calculations are transmitted directly to the PC via Radio Frequency (RF) links, providing a seamless stream of drift-free data. Sensors within the tracking range provide full position and orientation data.

EXPAND & EVOLVE
Each G4 hub can track up to three sensors, with an update rate of 120Hz each. Track additional objects or people by increasing the number of hubs; expand the tracking range by adding additional sources.

FEATURES
- Wireless RF Communication
- Set Up & Track in Minutes
- No Line-of-Sight Occlusions
- 10+ Hours of Battery Life
- Scalable
- Zero Drift
- Compact Size
- Ultra-Portable

APPLICATIONS
G4 paves the way for cutting-edge solutions and advancement in the areas of training and simulation, rehabilitation, physical therapy, biomechanics, sports analysis, and virtual or augmented reality.

(left) Lightweight and portable G4 Hub
COMPONENTS

The standard G4 system includes an SEU (System Electronics Unit), or hub, one standard sensor, one source and one RF/USB module. You can easily expand the system's capability by adding hardware components.

SYSTEM ELECTRONICS UNIT
Embedded hardware and software computes the position and orientation of each sensor and wirelessly transmits data.

- **WEIGHT:** 4 oz (114 g)
- **DIMENSIONS:** 4.2 in (10.6 cm) x 0.75 in (1.9 cm) x 2.6 in (6.6 cm)

STANDARD SENSOR
A small lightweight cube, the sensor’s position and orientation is precisely measured as it is moved.

- **WEIGHT:** 0.32 oz (9.1 g)
- **DIMENSIONS:** .9 in (2.29 cm) x 1.11 in (2.82 cm) x .6 in (1.52 cm)

SOURCE
The source generates the magnetic field in which the sensor is tracked.

- **WEIGHT:** 1.60 lb (726 g)
- **DIMENSIONS:** 4.07 in (10.34 cm) x 4.05 in (10.29 cm) x 4.07 in (10.34 cm)

Dimensions and weight are approximate. Dimensional drawings available upon request.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>UPDATE RATE</th>
<th>INTERFACE</th>
<th>LATENCY</th>
<th>STATIC ACCURACY</th>
<th>SOFTWARE TOOLS</th>
<th>SYNC INPUT</th>
<th>OPERATING TEMPERATURE</th>
<th>POWER REQUIREMENTS</th>
<th>REGULATORY</th>
</tr>
</thead>
</table>
| 120Hz per sensor, simultaneous sampling | Proprietary RF link; 2.4 GHz frequency-hopping architecture; USB | Less than 10 milliseconds in optimal RF communications conditions | 1 meter (3.3 ft): 0.50 degrees RMS - 0.08 inches/.20 cm RMS
2 meter (6.5 ft): 0.75 degrees RMS - 0.25 inches/.64 cm RMS
3 meter (9.8 ft): 1.00 degrees RMS - 0.50 inches/1.27 cm RMS | PMgr GUI for Microsoft Windows®
Setup and Configuration Utilities for Microsoft Windows® and Linux®
PDI SDK for Microsoft Windows®
C Programming APIs for Microsoft Windows® and Linux® | Up to 8 discrete digital inputs for event triggers | 10°C to 40°C at a relative humidity of 10% to 95%, noncondensing | Source: 5 volt, 1 amp/hub: 5 volt, 500 ma/RF dongle: 5 volt, 30 ma Internal battery, rechargeable via USB or included power supply | FCC Part 15, Class B
2.4 GHz Radio Approval:
FCC Part 15
IC RSS 210 | EN61326-1: 2013 Emissions
EN61326-1: 2013 Immunity,
Basic Environment
EN 301489-1 V1.9.2 2011 Emissions
EN 301489-3 V1.6.1 2011 Immunity,
Basic Environment |

RANGE VS RESOLUTION (WITH RX2)

<table>
<thead>
<tr>
<th>Range (inches)</th>
<th>Position Resolution (inches)</th>
<th>Orientation Resolution (degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0</td>
<td>0.0003</td>
<td>0.0008</td>
</tr>
<tr>
<td>24.0</td>
<td>0.0010</td>
<td>0.0020</td>
</tr>
<tr>
<td>48.0</td>
<td>0.0080</td>
<td>0.013</td>
</tr>
<tr>
<td>96.0</td>
<td>0.0610</td>
<td>0.100</td>
</tr>
</tbody>
</table>

GET IN TOUCH

Our technology powers applications in a wide variety of markets, catering to healthcare, military, and in countless research areas. Talk with our Motion Tracking Experts today.

POLHEMUS.COM

Large metallic objects, such as desks or cabinets, located near the source or sensor, may adversely affect the performance of the system.

G4 and Micro Sensor 1.8 are trademarks of Polhemus.

Copyright © 2010 Polhemus, Rev. November 2017 ST: MSO84

Microsoft Windows is a registered trademark of Microsoft Corporation.

Linux is a registered trademark of Linus Torvalds.

Polhemus is a Good Manufacturing Practices (GMP) Contract Manufacturer under U.S. FDA Regulations. We are not a manufacturer of Medical Devices. Polhemus systems are not certified for medical or bio-medical use. Any references to medical or bio-medical use are examples of what medical companies have done with the products after they have obtained all necessary or appropriate medical certifications. The end user/OEM/VAR must comply with all pertinent FDA/CE regulations pertaining to the development and sale of medical devices and all other regulatory requirements.